Probabilistic Error Analysis for Inner Products
نویسندگان
چکیده
منابع مشابه
Improved Error Bounds for Inner Products in Floating-Point Arithmetic
Given two floating-point vectors x, y of dimension n and assuming rounding to nearest, we show that if no underflow or overflow occurs, any evaluation order for inner product returns a floating-point number r̂ such that |r̂ − xT y| 6 nu|x|T |y| with u the unit roundoff. This result, which holds for any radix and with no restriction on n, can be seen as a generalization of a similar bound given in...
متن کاملHomotopy Inner Products for Cyclic Operads
We introduce the notion of homotopy inner products for any cyclic quadratic Koszul operad O, generalizing the construction already known for the associative operad. This is done by defining a colored operad b O, which describes modules over O with invariant inner products. We show that b O satisfies Koszulness and identify algebras over a resolution of b O in terms of derivations and module map...
متن کاملSimple Functional Encryption Schemes for Inner Products
Functional encryption is a new paradigm in public-key encryption that allows users to finely control the amount of information that is revealed by a ciphertext to a given receiver. Recent papers have focused their attention on constructing schemes for general functionalities at expense of efficiency. Our goal, in this paper, is to construct functional encryption schemes for less general functio...
متن کاملBoundedness properties for Sobolev inner products
Sobolev orthogonal polynomials with respect to measures supported on subsets of the complex plane are considered. The connection between the following properties is studied: the multiplication operator M p(z) = zp(z) defined on the space P of algebraic polynomials with complex coefficients is bounded with respect to the norm defined by the Sobolev inner product, the supports of the measures are...
متن کاملOn the transcendence of certain Petersson inner products
We show that for all normalized Hecke eigenforms $f$ with weight one and of CM type, the number $(f,f)$ where $(cdot, cdot )$ denotes the Petersson inner product, is a linear form in logarithms and hence transcendental.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2020
ISSN: 0895-4798,1095-7162
DOI: 10.1137/19m1270434